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Abstract

Let V be an n-dimensional inner product space over C, let H be a subgroup of
the symmetric group on {1, . . . , m}, and let χ : H → C be an irreducible character.
Denote by V m

χ (H) the symmetry class of tensors over V associated with H and χ. Let

K(T ) ∈ End (V m
χ (H)) be the operator induced by T ∈ End (V ), and let DK(T ) be the

derivation operator of T . The decomposable numerical range W ∗(DK(T )) of DK(T ) is
a subset of the classical numerical range W (DK(T )) of DK(T ). It is shown that there
is a closed star-shaped subset S of complex numbers such that

S ⊆ W ∗(DK(T )) ⊆ W (DK(T )) = convS,

where convS denotes the convex hull of S. In many cases, the set S is convex, and thus
the set inclusions are actually equalities. Some consequences of the results and related
topics are discussed.
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1 Introduction

Let V be an n-dimensional inner product space over C. Let Sm be the symmetric group
of degree m on the set {1, . . . ,m}. Each σ ∈ Sm gives rise to a linear operator P (σ) on
⊗mV :

P (σ)(v1 ⊗ v2 ⊗ · · · ⊗ vm) := vσ−1(1) ⊗ vσ−1(2) ⊗ · · · ⊗ vσ−1(m), v1, . . . , vm ∈ V.

Let H be a subgroup of Sm and let χ : H → C be an irreducible character of H. The
symmetrizer

Sχ :=
χ(e)
|H|

∑

σ∈H

χ(σ)P (σ) ∈ End (⊗mV )

is an orthoprojector with respect to the inner product on ⊗mV induced by the inner product
on V via

(u1 ⊗ · · · ⊗ um, v1 ⊗ · · · ⊗ vm) :=
m∏

i=1

(ui, vi),

and the range of Sχ

V m
χ (H) := Sχ(⊗mV )

is called the symmetry class of tensors over V associated with H and χ. The elements in
V m

χ (H) of the form Sχ(v1 ⊗ · · · ⊗ vm) are called decomposable symmetrized tensors and are
denoted by v1 ∗ · · · ∗ vm.

Let T ∈ End (V ). There is a unique induced operator K(T ) acting on V m
χ (H) satisfying

K(T )v1 ∗ . . . ∗ vm = Tv1 ∗ · · · ∗ Tvm.

Furthermore, one can define the derivation operator DK(T ) of T by

DK(T ) =
d
dt

K(I + tT )
∣∣∣∣
t=0

,

which acts on V m
χ (H) in the following way:

DK(T )v1 ∗ . . . ∗ vm =
m∑

j=1

v1 ∗ · · · ∗ vj−1 ∗ Tvj ∗ vj+1 ∗ · · · ∗ vm.

Clearly T 7→ DK(T ) is linear. (See [19, 20] for general background on K(T ) and DK(T ).)
Define the numerical range and the decomposable numerical range of a linear operator

L acting on V m
χ (H) by

W (L) = {(Lx, x) : x ∈ V m
χ (H), (x, x) = 1},
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and
W ∗(L) = {(Lx, x) : x ∈ V m

χ (H) is decomposable, (x, x) = 1},
respectively. The numerical range and the decomposable numerical range are useful concepts
for studying linear operators and they also have applications to other areas such as quantum
physics (see [3, 4, 14, 15, 17, 22]). Clearly

W ∗(L) ⊆ W (L),

but since a unit vector in V m
χ (H) need not be decomposable [19, 20, 24, 29], one cannot

expect equality to hold in general. However, in this paper we show that there is a closed
star-shaped subset S of C such that

S ⊆ W ∗(DK(T )) ⊆ W (DK(T )) = convS.

We give several examples for which S is actually convex so that all of the above sets are
equal. For instance, this is the case when H = Sm (see Theorem 4.2). In particular
S = convS when χ is the alternating character of Sm with m ≤ n. In this case V m

χ (H)
is the mth exterior space ∧mV , which has the special feature that each unit decomposable
vector u1 ∗ · · · ∗ um is equal to some v1 ∗ · · · ∗ vm with v1, . . . , vm orthonormal vectors in
V . Consequently, the decomposable numerical range W ∗(DK(T )) of DK(T ) is equal to the
mth higher numerical range of T [22]

Wm(T ) =





m∑

j=1

(Tvj , vj) : {v1, . . . , vm} is an orthonormal set in V



 ,

which is convex by a result of Berger [22].
We present some preliminaries in Section 2, and prove the set inclusion result in Section

3. In Section 4 we discuss the situation where H is the dihedral group, the alternating group,
or the full symmetric group (or, more generally, a Young subgroup). Some consequences
are deduced in Section 5 and related results are discussed in Section 6.
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2 Preliminaries

In this section, we present some preliminary results for induced operators. (See [19, 20,
24, 29] for general background.)

Let I(H) be the set of irreducible characters of H ≤ Sm. If χ, ξ ∈ I(H) and χ 6= ξ,
then SχSξ = 0. Moreover

∑
χ∈I(H) Sχ is the identity operator on ⊗mV . So we have the

orthogonal sum

⊗mV =
∑̇

χ∈I(H)
V m

χ (H).

Let Γm,n be the set of sequences α = (α(1), . . . , α(m)) with 1 ≤ α(j) ≤ n for j =
1, . . . ,m. Two sequences α and β in Γm,n are said to be equivalent modulo H, denoted by
α ∼ β, if there exists σ ∈ H such that β = ασ, where ασ := (α(σ(1)), . . . , α(σ(m))). This
equivalence relation partitions Γm,n into equivalence classes. Let ∆ be a system of repre-
sentatives for the equivalence classes such that each sequence in ∆ is first in its equivalence
class relative to the lexicographic order. Define ∆̄ as the subset of ∆ consisting of those
sequences α ∈ ∆ such that ∑

σ∈Hα

χ(σ) 6= 0,

where Hα := {σ ∈ H : ασ = α} is the stabilizer subgroup of α.
Let B = {e1, . . . , en} be a basis for V . Then {e⊗α := eα(1) ⊗ · · · ⊗ eα(m) : α ∈ Γm,n} is a

basis for ⊗mV . Let

e∗α := Sχe⊗α =
χ(e)
|H|

∑

σ∈H

χ(σ)eασ−1(1) ⊗ · · · ⊗ eασ−1(m),

for each α ∈ Γm,n. Then {e∗α : α ∈ Γm,n} is a spanning set for the space V m
χ (H), but it may

not be linearly independent. Indeed some of these vectors may even be zero. It is known
that e∗α 6= 0 if and only if the restriction of χ to Hα contains the principal character as an
irreducible constituent [24, p. 163]. Let

Ω := {α ∈ Γm,n : (χ, 1)Hα 6= 0}.

Note that ∆̄ = ∆ ∩ Ω and [24, (6.15), p. 164]

Ω = ∪α∈∆̄{ασ : σ ∈ H}. (2.1)

The set {e∗α : α ∈ Ω} consists of the nonzero elements of {e∗α : α ∈ Γm,n}. Moreover

V m
χ (H) = ⊕α∈∆̄Oα, (2.2)
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where Oα := 〈e∗ασ : σ ∈ H〉 (called an orbital subspace). Freese’s theorem [24, p. 165] asserts
that

sα := dimOα =
χ(e)
|Hα|

∑

σ∈Hα

χ(σ) = χ(e)(χ, 1)Hα . (2.3)

We now construct a basis for V m
χ (H). For each α ∈ ∆̄, we find a basis for the orbital

subspace Oα: choose a lexicographically ordered set {α1, . . . , αsα} from {ασ : σ ∈ H} such
that {e∗α1

, . . . , e∗αsα
} is a basis for Oα. Execute this procedure for each γ ∈ ∆̄. If {α, β, · · ·}

is the lexicographically ordered set ∆̄, take

∆̂ = {α1, . . . , αsα , β1, . . . , βsβ
, . . .}

to be ordered as indicated. Then {e∗α : α ∈ ∆̂} is a basis for V m
χ (H) (but note that the

elements of ∆̂ need not be lexicographically ordered). Clearly ∆̄ ⊆ ∆̂ ⊆ Ω. Although ∆̂ is
not unique, it does not depend on the basis B since ∆ and ∆̄ do not depend on B. Thus if
B′ = {f1, . . . , fn} is another basis for V , then {f∗α : α ∈ ∆̂} is still a basis for V m

χ (H).
The inner product of V induces an inner product on V m

χ (H):

(u∗, v∗) =
χ(e)
|H|

∑

σ∈H

χ(σ)
m∏

t=1

(ut, vσ(t)). (2.4)

Let B = {e1, . . . , en} be an orthonormal basis for V . Then

(e∗α, e∗β) =

{
0 if α 6∼ β
χ(e)
|H|

∑
σ∈Hα

χ(σ) if α = β,

and thus

‖e∗α‖2 =
χ(e)
|H|

∑

σ∈Hα

χ(σ).

Hence (2.2) becomes V m
χ (H) =

∑̇
α∈∆̄ 〈e∗ασ : σ ∈ H〉, an orthogonal sum. However, those

e∗α’s of {e∗α : α ∈ ∆̂} belonging to the same orbital subspace need not be orthogonal.

It is known [29, p. 103] and also follows from (2.3) that ∆̄ = ∆̂ if and only if χ is linear.
In such cases, {e∗α : α ∈ ∆̄} is an orthogonal basis for V m

χ (H).
We give several common examples of symmetry classes of tensors and induced operators.

Example 2.1 Assume 1 ≤ m ≤ n, H = Sm, and χ is the alternating character, that is,
χ(σ) = sgn (σ). Then V m

χ (H) is the mth exterior space ∧mV , ∆̄ = ∆̂ = Qm,n, the set
of strictly increasing sequences in Γm,n, ∆ = Gm,n, the set of nondecreasing sequences in
Γm,n, and K(T ) is the mth compound of T ∈ End (V ), usually denoted by Cm(T ). 2

5



Example 2.2 Assume H = Sm and χ ≡ 1, the principal character. Then V m
χ (H) is the

mth completely symmetric space over V = Cn, ∆̄ = ∆̂ = ∆ = Gm,n, and K(T ) is the mth
induced power of T ∈ End (V ), usually denoted by Pm(T ). 2

Example 2.3 [14] Assume H = {e}, where e is the identity in Sm (and χ ≡ 1, which is the

only irreducible character). Then V m
χ (H) = ⊗mV , ∆̄ = ∆̂ = ∆ = Γm,n, and K(T ) = ⊗mT

is the mth tensor power of T ∈ End (V ). 2

We now provide an example with nonlinear irreducible character.

Example 2.4 [14] Assume H = S3 and χ = χ3 (notation as in [13, p. 157]), the only
nonlinear irreducible character. We have χ(e) = 2, χ((12)) = 0, χ((123)) = −1. Assume
n := dimV = 2. Then [24, p. 164]

∆̄ = {(1, 1, 2), (1, 2, 2)}, ∆̂ = {(1, 1, 2), (1, 2, 1), (1, 2, 2), (2, 1, 2)}.
Let B = {e1, e2} be a basis for V . Then B∗ = {e∗(1,1,2), e

∗
(1,2,1), e

∗
(1,2,2), e

∗
(2,1,2)} is a basis for

V m
χ (H), and (see [29, pp. 98–101])

e∗(2,1,1) = −e∗(1,1,2) − e∗(1,2,1), e∗(2,2,1) = −e∗(1,2,2) − e∗(2,1,2).

Let T ∈ End (V ) be defined by

[T ]B =
(

a b

c d

)
.

By direct computation,

[K(T )]B∗ =




a2d− abc 0 abd− b2c 0
0 a2d− abc abd− b2c b2c− abd

acd− bc2 0 ad2 − bcd 0
acd− bc2 bc2 − acd 0 ad2 − bcd




and

[DK(T )]B∗ =




2a + d 0 b 0
0 2a + d b −b

c 0 a + 2d 0
c −c 0 a + 2d


 .

Observe that B∗ is not an orthogonal basis even if B is an orthonormal basis, since

(e∗(1,1,2), e
∗
(1,2,1)) = (e∗(1,2,2), e

∗
(2,1,2)) = −1

3
.

2
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Let mj(α) denote the number of occurrences of j = 1, . . . , n in the sequence α ∈ Γm,n.
The vector m(α) = (m1(α), . . . ,mn(α)) is called the multiplicity vector of α.

Recall that Ω := {α ∈ Γm,n : (χ, 1)Hα 6= 0}. Let m(Ω) := {m(α) : α ∈ Ω} ⊆ Nn be
the collection of multiplicity vectors of all α ∈ Ω. A vector k ∈ Nm is said to be admissible
if k ∈ m(Ω). We claim that m(Ω) is invariant under the usual action of Sn on Nn given
by kτ = (kτ(1), . . . , kτ(n)) (k ∈ Nn, τ ∈ Sn). Let α ∈ Ω and τ ∈ Sn. With the definition
τα = (τ(α(1)), . . . , τ(α(m)), we clearly have Hτα = Hα so that τΩ = Ω. One easily checks
that m(α)τ = m(τ−1α). Thus, m(Ω)τ = m(τ−1Ω) = m(Ω), as desired.

3 Set inclusion and convexity

Let T ∈ End (V ) have eigenvalues λ1(T ), . . . , λn(T ) and let B = {v1, . . . , vn} be an
orthonormal basis of V . One calls B a Schur basis for T if the matrix representation A of
T with respect to B is upper triangular and diag A = (λ1(T ), . . . , λn(T )). According to the
Schur Triangularization Theorem, a Schur basis always exists no matter how the λi(T ) are
preordered.

Assume that B is a Schur basis for T . The matrix of DK(T ) relative to the basis

{v∗α : α ∈ ∆̂} of V m
χ (H) is upper triangular. Moreover, the diagonal entries of this matrix

are

λα =
n∑

j=1

mj(α)λj(T ), α ∈ ∆̂.

So, in particular, these are the eigenvalues of DK(T ). We point out that it might not be

possible to choose ∆̂ for which {v∗α : α ∈ ∆̂} is orthogonal [30, 10, 9] and thus this need not
be a Schur basis for DK(T ).

Denote by Spec (L) the spectrum of a linear operator L. The following is an extension
of the well-known result SpecL ⊂ W (L) [8].

Proposition 3.1 Let T ∈ End (V ). Then Spec (DK(T )) ⊂ W ∗(DK(T )).

Proof. Let x1, . . . , xn ∈ V and let α ∈ Ω. We have

(DK(T )x∗α, x∗α) = (DK(T )xα(1) ∗ · · · ∗ xα(m), xα(1) ∗ · · · ∗ xα(m))

= (
m∑

i=1

xα(1) ∗ · · ·Txα(i) ∗ · · ·xα(m), xα(1) ∗ · · · ∗ xα(m))

=
m∑

i=1

χ(e)
|H|

∑

σ∈H

χ(σ)(Txα(i), xασ(i))
∏

j 6=i

(xα(j), xασ(j)). (3.5)
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Now suppose {x1, . . . , xn} is an orthonormal basis for V . Let σ ∈ H and suppose that∏
j 6=i(xα(j), xασ(j)) 6= 0. Then α(j) = ασ(j) for all j 6= i. But since mt(α) = mt(ασ) for

t = 1, . . . , n, we also have α(i) = ασ(i). So σ ∈ Hα. Thus

(DK(T )x∗α, x∗α) =
m∑

i=1

χ(e)
|H|

∑

σ∈Hα

χ(σ)(Txα(i), xα(i))

=
χ(e)
|H|

∑

σ∈Hα

χ(σ)
m∑

i=1

(Txα(i), xα(i))

= ‖x∗α‖2
n∑

t=1

mt(α)(Txt, xt). (3.6)

Since ‖x∗α‖2 = χ(e)
|H|

∑
σ∈Hα

χ(σ) = (χ, 1)Hα 6= 0, the desired result follows if {x1, . . . , xn} is

a Schur basis. 2

Since ReW (L) = W (Re (L)) where Re denotes the real part of a complex number as
well as the Hermitian part of an operator, the right vertical support line of W (L) equals

{µ ∈ C : Re µ = max Spec (ReL)}.

Given c = (c1, . . . , cn) ∈ Cn , the c-numerical range of T ∈ End (V ) is the following
subset of C:

Wc(T ) :=





n∑

j=1

cj(Txj , xj) : {x1, . . . , xn} is an orthonormal basis for V



 .

It is known that Wc(T ) is convex if c ∈ Rn, but it can fail to be convex if c ∈ Cn [31] (See
[25] for another proof and [27] for a generalization in the context of compact Lie groups).

We say that c = (c1, . . . , cn) ∈ Rn is majorized by d = (d1, . . . , dn) ∈ Rn, written c ≺ d,
if for each 1 ≤ k ≤ n the sum of the k largest entries of c is not larger than that of d, and∑n

j=1 cj =
∑n

j=1 dj . Majorization induces a partial order on the set of orbits (under the
entry permutation action of Sn) of those vectors in Rn having the same entry sum. Two
vectors x, y ∈ Rn are said to be comparable if either x ≺ y or y ≺ x. Clearly not all pairs
of vectors are comparable; for example, x = (4, 1, 1) and y = (3, 3, 0) are not comparable.

It is known that if c is majorized by d then Wc(T ) ⊆ Wd(T ) [6, 1].

Theorem 3.2 The set

S := ∪α∈ΩWm(α)(T ) = ∪α∈∆̂Wm(α)(T ) = ∪α∈∆̄Wm(α)(T )
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is star-shaped with m
n trT as a star-center. Moreover,

S ⊆ W ∗(DK(T )) ⊆ W (DK(T )) = convS.

All these sets are equal to Wm(δ)(T ) if there is δ ∈ Ω such that m(δ) majorizes m(α) for

all α ∈ Ω (resp., α ∈ ∆̄).

Proof. Recall 2.1 Ω = ∪α∈∆̄{ασ : σ ∈ H}. Clearly m(α) = m(ασ) and thus Wm(α)(T ) =
Wm(ασ)(T ) for any α ∈ Γm,n, σ ∈ Sm. So S := ∪α∈ΩWm(α)(T ) = ∪α∈∆̄Wm(α)(T ). Since

Ω ⊇ ∆̂ ⊇ ∆̄, we have S = ∪α∈∆̂Wm(α)(T ) as well.
Note that for any α ∈ Ω, we have (m/n)tr T ∈ Wm(α)(T ). This is because there is an

orthonormal basis {u1, . . . , un} of V such that (Tui, ui) = 1
ntrT for all i = 1, . . . , n [5], and

m =
∑n

t=1 mt(α). Thus the set S is star-shaped with (m/n)trT as a star-center by the
convexity of each Wm(α)(T ) (α ∈ Ω). (Also see [28].)

Each element of Wm(α)(T ) is of the form
∑n

t=1 mt(α)(Txt, xt) for some orthonormal
basis {x1, . . . , xn}. By (3.6)

Wm(α)(T ) ⊆ W ∗(DK(T )).

Hence
S ⊆ W ∗(DK(T )) ⊆ W (DK(T )).

Next, we are going to prove that

W (DK(T )) = convS.

Since W (DK(T )) is convex [8, p.110] and contains S, we get W (DK(T )) ⊇ convS. There-
fore, it remains to prove the other inclusion, and for this it suffices to prove that every
extreme point of W (DK(T )) belongs to Wm(α)(T ) for some α ∈ ∆̂.

First, we consider an exposed boundary point µ ∈ W (DK(T )). By definition, there
exists a support line of W (DK(T )) intersecting W (DK(T )) in the point µ alone. Then
there is r ∈ [0, 2π) such that eirµ is the only point of W (eirDK(T )) = eirW (DK(T )) on the
right vertical support line of W (eirDK(T )). Since T 7→ DK(T ) is linear, DK(Re (eirT )) =
Re (eirDK(T )). By the discussion before the theorem,

Re eirµ = maxSpec (Re (eirDK(T )))

= maxSpec (DK(Re (eirT )))

= max
α∈∆̂

n∑

j=1

mj(α)λj(Re (eir(T ))).
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Let {v1, . . . , vn} be an orthonormal basis of eigenvectors corresponding to the eigenvalues
λ1(Re (eirT )) ≥ · · · ≥ λn(Re (eirT )) of the Hermitian operator Re (eirT ). Then

λj(Re (eirT )) = (Re (eirT )vj , vj) = Re (eirTvj , vj), j = 1, . . . , n.

So there is α ∈ ∆̂ such that

Re eirµ = Re
n∑

j=1

mj(α)(eirTvj , vj).

Hence the point

n∑

j=1

mj(α)(eirTvj , vj) ∈ Wm(α)(e
irT ) ⊆ W (DK(eirT )) = W (eirDK(T ))

lies on the right vertical support line of W (eirDK(T )). Since eirµ is the only point of
W (eirDK(T )) lying on the right vertical support line, eirµ =

∑n
j=1 mj(α)(eirTvj , vj) and

hence

µ =
n∑

j=1

mj(α)(Tvj , vj) ∈ Wm(α)(T ).

Straszewicz’s theorem [26, p. 167] asserts that the set of exposed points of any closed
convex set C is a dense subset of the set of extreme points of C. (The convex hull of two
circular disks in C of the same radius but of different centers is a simple example for seeing
how an extreme point is the limit of a sequence of exposed points.) Now Wm(α)(T ) ⊂ C,

α ∈ ∆̂, are finitely many closed sets. So S = ∪α∈∆̂Wm(α)(T ) is closed and contains all the
exposed points of the closed convex set W (DK(T )). We conclude that every extreme point
of W (DK(T )) belongs to S.

Finally, suppose there is δ ∈ Ω such that m(δ) majorizes m(α) for all α ∈ Ω (resp.,
α ∈ ∆̄). Then Wm(δ)(T ) ⊇ Wm(α)(T ) for each α ∈ Ω (resp., α ∈ ∆̄), whence S = Wm(δ)(T ).
Since Wm(δ)(T ) is convex, we have convS = S and so the inclusions in the statement of the
theorem are all equalities. The last assertion of the theorem follows. 2

4 Largest multiplicity vector and convexity

A vector x ∈ m(Ω) is said to be a largest vector of m(Ω) if y ≺ x for all y ∈ m(Ω). A
largest vector of m(Ω), if it exists, is unique up to permutation of its entries.
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In this section, we give examples for which the set equalities

S = W ∗(DK(T )) = W (DK(T )) = convS (4.7)

hold. We establish the indicated equalities in each case by showing that either Ω is empty,
so that these sets are all empty as well, or m(Ω) has a largest vector k, so that these sets
all equal Wk(T ) by Theorem 3.2. We also give examples to illustrate that some of these
equalities can fail to hold (see Theorems 4.5 and 4.6). We point out that in all of the
examples in Section 2 there is a largest vector of m(Ω), so (4.7) holds in those cases.

Our first example was already observed in [4, Theorem 8.1].

Proposition 4.1 Suppose χ is the principal character of the subgroup H of Sm. Then
m(Ω) has a largest vector, namely (m, 0, . . . , 0), and so (4.7) holds. Moreover the sets in
(4.7) all equal mW (T )

Proof. As observed in [4, Theorem 8.1], (m, 0, . . . , 0) = m(δ), where δ = (1, 1, . . . , 1) ∈ Ω,
so (m, 0, . . . , 0) is in m(Ω), and it is clearly a largest vector of m(Ω). Therefore, Theorem
3.2 says the sets in (4.7) all equal Wm(δ)(T ) = {m(Tx, x) : x ∈ V, (x, x) = 1}. 2

Theorem 4.2 If H = Sm, then (4.7) holds.

Proof. Assume H = Sm and let πχ be the partition of m corresponding to χ [24]. If πχ has
greater than n parts, then Ω is empty [24, Corollary 6.38, p. 169]. Assume πχ has at most
n parts, so that, in particular, it is a multiplicity vector. It is known that a multiplicity
vector k ∈ Nn is admissible if and only if k is majorized by πχ [24, p. 169], [14]. It follows
that πχ is a largest vector of m(Ω). 2

For a partition µ = (µ1, . . . , µr) of m, the corresponding Young subgroup of Sm is the
internal direct product Sµ = SM1 × · · · × SMr , where SMi is the subgroup of Sm consisting
of those permutations that fix every integer not contained in the set

Mi :=



1 ≤ k ≤ m :

i−1∑

j=1

µj < k ≤
i∑

j=1

µj





(an empty sum being interpreted as zero).

Theorem 4.3 Let µ = (µ1, . . . , µr) be a partition of m. If H = Sµ (Young subgroup), then
(4.7) holds.
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Proof. Assume H = Sµ = SM1 × · · · ×SMr (notation as above). Then χ = χ1× · · · ×χr

with χi an irreducible character of SMi (1 ≤ i ≤ r).
Denoting by ΓMi,n the set of functions from Mi to {1, . . . , n} we have a bijection Γm,n →

ΓM1,n× · · · ×ΓMr,n given by α 7→ (α1, . . . , αr), where αi denotes the restriction of α to Mi.
For α ∈ Γm,n we have Hα = (SM1)α1 × · · · × (SMr)αr so that

(χ, 1)Hα =
r∏

i=1

(χi, 1)(SMi
)αi

.

Therefore, α ∈ Ω if and only if αi ∈ Ωi := {β ∈ ΓMi,n : (χi, 1)(SMi
)β
6= 0} for each

i. Clearly m(α) =
∑

i m(αi) (α ∈ Γm,n), so it follows from the observations above that
m(Ω) =

∑
i m(Ωi). Identifying SMi with Sµi in the natural way, we have that χi equals

χπi for some partition πi of µi. If some πi has greater than µi parts, then Ωi is empty,
whence Ω is empty and (4.7) holds. Assume each πi has at most µi parts. Then the proof
of Theorem 4.2 shows that πi is a largest vector of m(Ωi) and thus π :=

∑
i πi is a largest

vector of m(Ω). 2

Proposition 4.4 If m ≤ 5, then (4.7) holds.

Proof. Assume m ≤ 5. Then majorization is a total order on the set of partitions of m.
Since each vector in m(Ω) lies in the orbit (under the entry permutation action of Sn) of
some partition of m, it follows that m(Ω) either is empty or has a largest vector. 2

In each of the examples so far m(Ω) has had a largest vector (or it has been empty).
We next give an example for which m(Ω) is nonempty and has no largest vector.

Assume H = Dm (m ≥ 3), the dihedral group, which is generated by

r =
(

1 2 · · · m− 1 m

2 3 · · · m 1

)
and s =

(
1 2 3 · · · m− 1 m

1 m m− 1 · · · 3 2

)
.

If m is even, there are 4 irreducible characters of degree 1, given by the following table:

ψ1 ψ2 ψ3 ψ4

rk 1 1 (−1)k (−1)k

srk 1 −1 (−1)k (−1)k+1

If m is odd, then ψ1 and ψ2 are the only irreducible characters of degree 1. The other
irreducible characters of Dm are of degree 2 and are induced by certain irreducible characters
of the cyclic subgroup Cm = 〈r〉.

Theorem 4.5 Assume H = Dm and let the notation be as above.
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1. Assume χ = ψ2, m > 5, and n ≥ 3. Then m(Ω) contains (m − 2, 1, 1, 0, . . . , 0) and
(m − 3, 3, 0, . . . , 0) and each vector in m(Ω) is majorized by one of these vectors. In
particular, there is no largest admissible vector. In fact, there exists T ∈ End(V ) for
which S is not convex and hence for which (4.7) fails to hold.

2. If χ 6= ψ2 or m ≤ 5 or n < 3, then (4.7) holds.

Proof. We first prove (1). We claim that (m − 1, 1, 0, . . . , 0) is not admissible. Otherwise
there is a γ ∈ Ω such that m(γ) = (m − 1, 1, 0, . . . , 0). We may assume γ = (2, 1, . . . , 1)
since r ∈ Dm. But now (χ, 1)Hγ = [χ(1) + χ(s)]/2 = (1 − 1)/2 = 0, contradicting that
γ ∈ Ω.

We next claim that (m − 2, 2, 0, . . . , 0) is not admissible. Otherwise there is a β ∈ Ω
such that m(β) = (m − 2, 2, 0, . . . , 0). We may assume that β = (2, 1, . . . , 1, 2, 1, . . . , 1),
where the second 2 is in the ith position for some i 6= 1. Then Hβ = {e, srm−i+1} and
(χ, 1)Hβ

= (1− 1)/2 = 0, a contradiction.
Let δ = (3, 2, 1, . . . , 1). Then Hδ = {e} and thus (χ, 1)Hδ

= 1. So (m−2, 1, 1, 0, . . . , 0) =
m(δ) is admissible.

Let ξ = (2, 2, 1, 2, 1, . . . , 1). Any element of Hξ must fix 3 since this is the only position i

for which ξi = 1 and ξi−1 = 2 = ξi+1 (subscripts modulo m), so that Hξ ⊆ {e, srm−4}. But
srm−4(1) = 5, so Hξ = {e}. Thus (χ, 1)Hξ

= 1 and (m−3, 3, 0, . . . , 0) = m(ξ) is admissible.
Using these observations, we see that all possible admissible vectors are majorized by

either m(δ) or m(ξ) and, since these two vectors are admissible and not comparable, we con-
clude that there is no largest admissible vector. Moreover, since Wc(T ) ⊆ Wd(T ) whenever
c ≺ d, we find that

S := ∪α∈ΩWm(α)(T ) = Wm(δ)(T ) ∪Wm(ξ)(T ).

Suppose T = diag (2 + i, 1) ⊕ 0n−2. It is a normal operator acting on V = Cn. Let
t := (t1, . . . , tn) = (2 + i, 1, 0, . . . , 0). Then (e.g., see [21]) Wc(T ) = conv {cT

σ t : σ ∈ Sn}
where cσ = (cσ(1), . . . , cσ(n)) for real c ∈ Rn. So

Wm(δ)(T ) = conv {(m− 2)tu + tv + tw : {u, v, w} is a
three-element subset of {1, . . . , n}},

and

Wm(ξ)(T ) = conv {(m− 3)tu + 3tv : {u, v} is a
two-element subset of {1, . . . , n}}.
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In particular, z1 = (2m−3)+(m−2)i is a vertex of Wm(δ)(T ) and z2 = (2m−3)+(m−3)i
is a vertex of Wm(ξ)(T ). But z1 is the only vertex of Wm(δ)(T ) with real part 2m − 3 and
clearly 2m−3 is the largest possible among the real parts of vertices of Wm(δ)(T ). A similar
statement holds for z2 and Wm(ξ)(T ). Therefore (z1 + z2)/2 = (2m − 3) + (m − 5/2)i is a
point on the segment joining z1 and z2 that does not belong to Wm(δ)(T ) ∪Wm(ξ)(T ). We
conclude that S is not convex.

Now we prove (2). If m ≤ 5, then the claim follows from Proposition 4.4. Assume
χ 6= ψ2 and m > 5. We consider cases:

(a) (χ is the principal character.) This case is handled by Proposition 4.1.

In the remaining cases, Ω is empty if n = 1, in which case (4.7) holds. So we assume
n > 1.

(b) (χ is of degree 2.) Since χ is induced from a character of the normal subgroup Cm

of H, it vanishes on the complement of Cm. Let γ = (2, 1, . . . , 1). Then clearly
Hγ = {e, s} and hence (χ, 1)Hγ = 1. Thus (m − 1, 1, 0, . . . , 0) = m(γ) is admissible
and it is clearly a largest such vector. Our claim now follows from Theorem 3.2 as
usual.

(c) (χ = ψ3.) Let γ = (2, 1, . . . , 1) as before. Then (χ, 1)Hγ = [χ(1)+χ(s)]/2 = (1+1)/2 =
1. Thus, (m− 1, 1, 0, . . . , 0) = m(γ) is admissible and it is a largest such vector.

(d) (χ = ψ4.) First, (m− 1, 1, 0, . . . , 0) is not admissible by an argument similar to that
in the proof of (1). Let β = (2, 2, 1, . . . , 1). Then Hβ = {e, srm−1} and (χ, 1)Hβ

=
(1+(−1)m)/2 = 1, using that m must be even in this case. Thus, (m−2, 2, 0, . . . , 0) =
m(β) is a largest admissible vector.

Finally, assume n < 3, χ = ψ2, and m > 5. Since n < 3, (m − 2, 1, 1, 0, . . . , 0) cannot be
admissible. Therefore, in view of the proof of (1), we have that (m− 3, 3, 0, . . . , 0) = m(ξ)
is a largest admissible vector, where ξ = (2, 2, 1, 2, 1, . . . , 1). This completes the proof. 2

For the T in the proof of part (1) of the theorem, we know only that one of the first two
equalities of (4.7) fails to hold, in view of Theorem 3.2. That is, either S 6= W ∗(DK(T )) or
W ∗(DK(T )) 6= W (DK(T )). It would be interesting to determine whether the line segment
joining z1 and z2 in the above proof belongs to W ∗(DK(T )) since an answer in the negative
would imply that W ∗(DK(T )) 6= W (DK(T )).

Assume H = Am (m ≥ 2), the alternating group. Suppose the irreducible character
χ of H is invariant under the conjugation action of Sm, that is, σχ = χ for all σ ∈ Sm,
where σχ(τ) = χ(τσ) = χ(σ−1τσ) (τ ∈ H). Then χSm = χπ + χπ′ for some partition π of
m (written π ` m) with π′ 6= π, where π′ denotes the conjugate partition of π. (See [11,
(6.20), (6.17)] and [24, Theorem 4.47].)
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Now suppose χ is not invariant. Then χSm = χπ for some π ` m with π′ = π. Moreover,
(σχ)Sm = χπ for every σ ∈ Sm. (See [11, (6.11)] and [24, Corollary 4.48].)

In summary: There exists π ` m such that for every σ ∈ Sm, (σχ)Sm = 2−ι(χπ + χπ′)
where

ι =
{

0, π′ 6= π,
1, π′ = π.

Note that ι is 0 or 1 according as χ is or is not invariant. Note also that by Frobenius
Reciprocity π may be taken to be any partition of m for which χ is a constituent of the
restriction of χπ to H.

Theorem 4.6 Assume H is the alternating group Am with n := dimV ≥ m ≥ 2, and let
π and π′ be described as above.

1. Then S = Wπ(T ) ∪Wπ′(T ).

2. If π and π′ are comparable, then (4.7) holds. In particular, if χ is not invariant, then
(4.7) holds.

Proof. We begin by establishing a formula. Let x ` m and assume x 6= [1m]. Then Sx

(Young subgroup) contains an odd permutation, whence HSx = Sm. Therefore, Mackey’s
Subgroup Theorem [11, p. 74] says ((1Sx)Sm)H = (1Sx∩H)H . Using this observation together
with Frobenius Reciprocity and linearity of the inner product, we obtain for each σ ∈ Sm

2−ι[(χπ, (1Sx)Sm)Sm + (χπ′ , (1Sx)Sm)Sm ] = ((σχ)Sm , (1Sx)Sm)Sm = (σχ, (1Sx)Sm)H

= (σχ, (1Sx∩H)H)H = (σχ, 1)Sx∩H .

Next, we claim that m(Ω) = {x ∈ Nn : x ≺ π or x ≺ π′}. Put

M = {xτ : x ` m, τ ∈ Sn, and either x ≺ π or x ≺ π′}.

Note that since n ≥ m and x ` m has at most m parts, one can view x as an element of
Nn so that the expression xτ = (xτ(1), . . . , xτ(n)) (τ ∈ Sn) is defined. According to our
definition of majorization, we have M = {x ∈ Nn : x ≺ π or x ≺ π′}. So it suffices to show
that m(Ω) = M .

Let x1 ∈ m(Ω). Then x1 = m(α1) for some α1 ∈ Ω. Now x := x1τ
−1 ` m for some

τ ∈ Sn. We have x = m(α1)τ−1 = m(τα1) = m(α), where α = τα1 ∈ Ω. Since the
stabilizer in Sm of α is conjugate to Sx it follows that Hα = (Sx)σ ∩ H = (Sx ∩ H)σ

for some σ ∈ Sm. Then (σχ, 1)Sx∩H = (χ, 1)(Sx∩H)σ = (χ, 1)Hα 6= 0. If x 6= [1m], then

the computation above implies that either (χπ, (1Sx)Sm)Sm or (χπ′ , (1Sx)Sm)Sm is nonzero
(because each of them is a nonnegative integer) so that x ≺ π or x ≺ π′ [12]. Since [1m] ≺ π,
it follows that in all cases x ≺ π or x ≺ π′. Thus x1 ∈ M .
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Now let x1 ∈ M . Then x1 = xτ for some x ` m and τ ∈ Sn with x ≺ π or x ≺ π′.
Set α = (1x1 , 2x2 , . . . , txt), where t is the length of x. (Note that α is in Γm,n by the
assumption n ≥ m and since t ≤ m.) Then Hα = Sx ∩ H. Assume x 6= [1m]. Since
x ≺ π or x ≺ π′, we see ([12] again) that the first member in the computation above
(with σ = 1) is nonzero. Thus (χ, 1)Hα 6= 0, implying α ∈ Ω. Now, if x = [1m], then
α = (1, 2, . . . , m), so Hα = {e}, whence α ∈ Ω. Thus, in all cases x = m(α) ∈ m(Ω).
Finally, x1 = m(α)τ = m(τ−1α) ∈ m(Ω) as desired.

Now we prove (1). Since Wc(T ) ⊆ Wd(T ) whenever c ≺ d, we have

S := ∪α∈ΩWm(α)(T ) = Wπ(T ) ∪Wπ′(T ).

Finally, we prove (2). If π Â π′, then π is a largest vector in m(Ω) and (4.7) follows
from Theorem 3.2. The same holds with π and π′ exchanged. Finally, if χ is not invariant,
then π′ = π so π and π′ are comparable and the proof is complete. 2

Note that if π = [5, 23] ` 11, then π′ = [42, 13] so that π and π′ are not comparable and
there is no largest admissible vector (see proof of theorem). It is easy to check that 11 is
the least m for which there exists a partition of m not comparable to its conjugate.

5 Some consequences

Using Theorem 3.2, we extend some results on the classical numerical range to the
decomposable numerical range. The irreducible character χ is said to be of determinant type
[14] if K(S) = (detS)m/nI for all S ∈ End (V ), or equivalently, each α ∈ ∆̄ satisfies m1(α) =
· · · = mn(α) (in which case each mj(α) = m/n). In this case, DK(T ) = (m/n)(tr T )I, and
W ∗(DK(T )) = W (DK(T )) = {(m/n)(tr T )}, which does not convey much information
about T . Otherwise, we have the following.

Theorem 5.1 Suppose χ is not of determinant type. Then DK(T ) is scalar (respectively,
Hermitian) if and only if T is scalar (respectively, Hermitian). Consequently,

(a) W ∗(DK(T )) or W (DK(T )) equals {µ} if and only if T = (µ/m)I;
(b) W ∗(DK(T )) or W (DK(T )) is a subset of R if and only if T = T ∗.

Proof. If T is scalar or Hermitian, then clearly DK(T ) has the corresponding property.
Suppose DK(T ) = µI. We claim that both ReT and ImT are scalar operators. If ReT were
not a scalar operator, then the spectrum of ReDK(T ) = DK(ReT ) would not be a singleton

set. It is because it contains
∑n

j=1 mj(α)λj(Re T ), α ∈ ∆̂. Since χ is not of determinant
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type, we may assume that m1(α) > m2(α) for some α ∈ ∆̂ and λ1(Re T ) > λ2(Re T ). Thus

m1(α)λ1(Re T ) + m2(α)λ2(Re T ) +
n∑

j=3

mj(α)λj(Re T )

> m2(α)λ1(Re T ) + m1(α)λ2(Re T ) +
n∑

j=3

mj(α)λj(Re T ),

since (m1(α) −m2(α))(λ1(ReT ) − λ2(Re T )) > 0. Notice that (m(α))(12) is still a mul-
tiplicity vector, where (12) denotes the transposition in Sn. So DK(T ) would have more
than one eigenvalue. Thus DK(T ) would be non-scalar, which is a contradiction. Applying
the same arguments, we see that ImT is a scalar, and the result follows.

Suppose DK(T ) is Hermitian. Then ImDK(T ) is the zero operator. By the previous
argument, we see that ImT is a scalar and thus the zero operator.

Now, (a) and (b) follow from the fact that SpecRe eirDK(T ) ⊆ W ∗(Re eirDK(T )) for
any r ∈ [0, 2π). 2

Theorem 5.2 Suppose χ is not of determinant type, and α, β ∈ C. The following condi-
tions are equivalent.

(a) W ∗(DK(T )) = W (DK(T )) ⊆ {αt + β : t ∈ R}.
(b) DK(T ) = αH̃ + βI for some Hermitian operator H̃.
(c) T = αH + (β/m)I for some Hermitian operator H.

Proof. The equivalence of (a) and (b) is well known. The implication (c) ⇒ (b) is clear.

Suppose DK(T ) = αH̃ +βI for some Hermitian operator H̃. Consider two cases. (1) α 6= 0.

DK [(T − (β/m)I)/α] = (DK(T )− βI)/α = H̃

is Hermitian, since DK(I) = mI. Thus, [T − (β/m)I]/α is Hermitian by Theorem 5.1(b).
Condition (c) follows. (2) α = 0. Then DK(T ) = βI and W (DK(T )) = {β}. By Theorem
5.1(a), T = βI/m.

2

6 Related topics

Suppose m ≤ n. Researchers also consider

W ∗
⊥(L) = {(Lv∗, v∗) : v∗ = v1 ∗ · · · ∗ vm, {v1, . . . , vm} is an orthonormal set in V } .

Using (3.6) with α = (1, 2, . . . ,m) so that mt(α) = 1 for all t = 1, . . . , m, we have the
following.
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Theorem 6.1 Suppose m ≤ n. Then

W ∗
⊥(DK(T )) =





χ(e)2

|H|
m∑

j=1

(Tvj , vj) : {v1, . . . , vm} is an orthonormal set in V



 .

Thus, W ∗
⊥(DK(T )) is, up to a scalar, the mth numerical range of T as defined by Halmos

[8].

Another generalization is

W̃ ∗(L) := {(L(u1 ∗ · · · ∗ um), u1 ∗ · · · ∗ um) : u1, . . . , um are unit vectors in V } .

Clearly W ∗
⊥(L) ⊆ W̃ ∗(L).

Theorem 6.2 Suppose 1 < m < n, H = Sm, and χ is the alternating character. Then

W̃ ∗(DK(T )) equals the convex hull of 1
n!Wm(T ) ∪ {0}.

Proof. Assume 1 < m < n and put L = DK(T ). Let µ ∈ 1
n!Wm(T ). By Theorem 6.1,

µ ∈ W ∗
⊥(L), so µ = (Lx∗, x∗) where x∗ = x1 ∗ · · · ∗ xm with x1, . . . , xm orthonormal. Let

0 ≤ t ≤ 1. Set u1 =
√

t x1 +
√

1− t x2 and uj = xj , j = 2, . . . ,m. Then u∗ =
√

tx∗ and

thus tµ = (Lu∗, u∗) ∈ W̃ ∗(L). Since Wm(T ) is convex [8], the convex hull of 1
nWm(T )∪ {0}

is contained in W̃ ∗(L).

Conversely, let µ ∈ W̃ ∗(L). Then µ = (Lx∗, x∗) with x1, . . . , xm unit vectors. If
x1, . . . , xm are linearly dependent, then x∗ = 0 and µ = 0. Assume x1, . . . , xm, are linearly
independent and let {u1, . . . , um} be an orthonormal basis of the linear span of x1, . . . , xm.
Then for i = 1, . . . , m, we can write xi =

∑m
j=1 aijuj with aij ∈ C, and x∗ = (detA) u∗,

where A = (aij). So µ = |det A|2(Lu∗, u∗). But |det A|2 = det (AA∗), which is less than
or equal to 1 by the Hadamard inequality [2], so µ is contained in the convex hull of
W ∗
⊥(L) ∪ {0}. Since W ∗

⊥(L) = 1
n!Wm(T ) by Theorem 6.1, we have the desired result. 2
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